Biphasic modulation of apoptotic pathways in Cryptosporidium parvum-infected human intestinal epithelial cells.
نویسندگان
چکیده
The impact of Cryptosporidium parvum infection on host cell gene expression was investigated by microarray analysis with an in vitro model using human ileocecal HCT-8 adenocarcinoma cells. We found changes in 333 (2.6%) transcripts at at least two of the five (6, 12, 24, 48, and 72 h) postinfection time points. Fifty-one of the regulated genes were associated with apoptosis and were grouped into five clusters based on their expression patterns. Early in infection (6 and 12 h), genes with antiapoptotic roles were upregulated and genes with apoptotic roles were downregulated. Later in infection (24, 48, and 72 h), proapoptotic genes were induced and antiapoptotic genes were downregulated, suggesting a biphasic regulation of apoptosis: antiapoptotic state early and moderately proapoptotic state late in infection. This transcriptional profile matched the actual occurrence of apoptosis in the infected cultures. Apoptosis was first detected at 12 h postinfection and increased to a plateau at 24 h, when 20% of infected cells showed nuclear condensation. In contrast, experimental silencing of Bcl-2 induced apoptosis in 50% of infected cells at 12 h postinfection. This resulted in a decrease in the infection rate and a reduction in the accumulation of meront-containing cells. To test the significance of the moderately proapoptotic state late in the infection, we inhibited apoptosis using pancaspase inhibitor Z-VAD-FMK. This treatment also affected the progression of C. parvum infection, as reinfection, normally seen late (24 h to 48 h), did not occur and accumulation of mature meronts was impaired. Control of host apoptosis is complex and crucial to the life of C. parvum. Apoptosis control has at least two components, early inhibition and late moderate promotion. For a successful infection, both aspects appear to be required.
منابع مشابه
Intestinal epithelial cell apoptosis following Cryptosporidium parvum infection.
Cryptosporidium parvum induces moderate levels of apoptosis of cultured human intestinal epithelial cells, which are maximal at 24 h after infection. Apoptosis is further increased in C. parvum-infected cells by inhibition of NF-kappaB. C. parvum infection also attenuates epithelial apoptosis induced by strongly proapoptotic agents. The data suggest C. parvum has developed strategies to limit a...
متن کاملInhibition of apoptosis in Cryptosporidium parvum-infected intestinal epithelial cells is dependent on survivin.
Cryptosporidium parvum is an obligate intracellular protozoan capable of causing severe diarrheal disease in a wide variety of mammals, including humans. C. parvum infection has been associated with induction of apoptosis in exposed epithelial cells, and we now demonstrate that apoptosis is restricted to a subset of cells actively infected with C. parvum. Approximately 20% of the infected cells...
متن کاملCryptosporidium parvum infection of human intestinal epithelial cells induces the polarized secretion of C-X-C chemokines.
Cryptosporidium parvum infects intestinal epithelial cells and does not invade deeper layers of the intestinal mucosa. Nonetheless, an inflammatory cell infiltrate that consists of neutrophils and mononuclear cells is often present in the lamina propria, which underlies the epithelium. This study investigated the host epithelial cell response to C. parvum by assessing in vitro and in vivo the e...
متن کاملCryptosporidium parvum infection of human intestinal xenografts in SCID mice induces production of human tumor necrosis factor alpha and interleukin-8.
The protozoan parasite Cryptosporidium parvum invades intestinal epithelial cells and can cause life-threatening diarrhea in immunocompromised individuals. Despite the clinical importance of this organism, much remains to be learned about the pathogenesis of C. parvum-induced diarrhea. To explore the role of the intestinal inflammatory response in C. parvum disease, using C. parvum oocysts we i...
متن کاملMarrow-derived CD40-positive cells are required for mice to clear Cryptosporidium parvum infection.
To clear a Cryptosporidium parvum infection, mice need CD4+ T cells, major histocompatibility complex class II, and an intact CD40-CD154 signaling pathway. CD40 is constitutively expressed on marrow-derived cells such as dendritic cells and B lymphocytes and is induced by gamma interferon (IFN-gamma) on most somatic cells. To determine whether the CD40 needed to clear a C. parvum infection has ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 77 2 شماره
صفحات -
تاریخ انتشار 2009